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Abstract

Background

While there is evidence that maternal exposure to benzessasiated with spina bifida
offspring, to our knowledge there have been no assessments taevatieole of multipl
hazardous air pollutants (HAPs) simultaneously on the risk of tlagvedy common birth
defect. In the current study, we evaluated the association betvatemal exposure to HAFR
identified by the United States Environmental Protection Agédcs. EPA) and spina bifid
in offspring using hierarchical Bayesian modeling that inclusiexhastic Search Varial
Selection (SSVS).

Methods

The Texas Birth Defects Registry provided data on spina bifisiesadelivered between 19
and 2004. The control group was a random sample of unaffected live bigsericy
matched to cases on year of birth. Census tract-level estimb@nnual HAP levels we
obtained from the U.S. EPA’s 1999 Assessment System for Population Exposure Nati
Using the distribution among controls, exposure was categorized asxpgsure (>98
percentile), medium exposure "®5" percentile), and low exposure (%5percentile
reference). We used hierarchical Bayesian logistic regressodels with SSVS to evalua
the association between HAPs and spina bifida by computing an odufO&) for each
HAP using the posterior mean, and a 95% credible interval (Qiubie 2.8 and 97.8

guantiles of the posterior samples. Based on previous assessments, any potlueaBayes

factor greater than 1 was selected for inclusion in a final model.

Results

Twenty-five HAPs were selected in the final analysisefaresent “bins” of highly correlatq

HAPs { > 0.80). We identified two out of 25 HAPs with a Bayes factoatgrethan 1f

quinoline (ORjgh = 2.06, 95% CI: 1.11-3.87, Bayes factor = 1.01) and trichloroeth
(ORmedium= 2.00, 95% CI. 1.14-3.61, Bayes factor = 3.79).

Conclusions

Overall there is evidence that quinoline and trichloroethylenelbraasignificant contributof

to the risk of spina bifida. Additionally, the use of Bayesian hierarchical medil SSVS i$

an alternative approach in the evaluation of multiple environmental puluta disease ris
This approach can be easily extended to environmental exposures, wherappogache
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are needed in the context of multi-pollutant modeling.
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Bayesian hierarchical models, Birth defects, Hazardous air pollutants nislat&posure,
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Background

Birth defects affect approximately 6% of births worldwide [h].the United States (U.S.),
birth defects are the leading cause of pediatric hospitalizd@pnsiedical expenditures [3],
and death in the first year of life [4]. Neural tube defects¥B)T one of the most common
groups of birth defects, are complex malformations of the cemtrabus system that result
from failure of neural tube closure [1]. One of the most common NiEDspina bifida.
Infants with spina bifida experience both increased morbidity andahtpitompared to their
unaffected contemporaries [5,6]. Although these defects are diyngghificant, little is
known about their etiology. However, there is growing evidence thae tbenditions are
associated with maternal exposure to environmental toxicants [7].

The U.S. Clean Air Act of 1990 classified 188 environmental toxicastsir toxics or
hazardous air pollutants (HAPs). In 1999, the United States Environmierasdction
Agency (U.S. EPA) went on to identify 33 HAPs that present theagtethreat to public
health [8]. Included in this list are: aromatic solvents (e.g., &)z chlorinated solvents
(e.g., methylene chloride) and metals (e.g., nickel compounds). AP s particularly
important group of environmental toxicants because: 1) they are knosuspected to cause
a range of adverse health outcomes [9]; 2) their levels areasing in communities
throughout the U.S. [10-12]; and 3) there are currently no national aitygsiaindards for
HAPs, as there are for the criteria air pollutants (e.g., carbon monoxide and [@8)ne)

While there is evidence that maternal exposure to benzessasiated with spina bifida in
offspring [14], to our knowledge there have been no assessments totevhkriaole of
multiple HAPs simultaneously on the risk of spina bifida or otheth bdefects. When
simultaneously evaluating multiple predictors for disease outcament methods focus on
building multivariable models, rather than the evaluation of siegf@sures adjusting for
known covariates [15]. Yet traditional stepwise methods for modedte®ieusing statistics
computed at each step can lead to biased estimates [15]. &ayewmiable selection
techniques, such as stochastic search methods, offer a solutiongootiiean. Specifically,
stochastic search methods include model selection uncertairitg mddel building process
to provide more comprehensive information regarding important predictors [164183e
stochastic search methods, also considered a Bayesian hietarckicgee model, can jointly
model multiple factors while including estimates of uncertaintpatance power and false
discovery control [18,19]. Specifically, simulations have shown thatspuoan be selected
such that the evidence of a correct association is higher fohastic search methods
compared to stepwise regression methods when selecting a modebtd@jastic search
methods also perform well in situations with correlated predi¢térs 0.25-0.80) [17-20].
As a result, stochastic search variable selection methods kawveshccessfully employed
when investigating complex diseases, especially when assessitigle genetic predictors
[21,22]. In the current study, we evaluated the association betwaemalaxposure to the
33 HAPs identified by the U.S. EPA and spina bifida in offspringgukiararchical Bayesian
modeling that includes stochastic search.



Methods

Study population

The study population has been described previously [14]. Briefly, olatdive births,
stillbirths, and electively terminated fetuses with NTDs (idehg spina bifida) delivered
between January 1, 1999 and December 31, 2004 were obtained from the iftexasfBcts
Registry = 1,108). The registry is a population-based, active surveillgystem that has
monitored births, fetal deaths, and terminations throughout the stagel€i86. A stratified
random sample of unaffected live births delivered in Texas bat@apuary 1, 1999 and
December 31, 2004 was selected as the control group using afrdticootrols to 1 case.
Controls were frequency matched to cases by year of birth dteetdecreasing birth
prevalence of NTDs over time [23]. This yielded a group of 4,132 alsntiThe study
protocol was reviewed and approved by the Institutional Review Baairdbe Texas
Department of State Health Services, The University of Tédealth Science Center at
Houston, and Baylor College of Medicine.

Exposure assessment

Census tract-level estimates of ambient HAP concentrations el#ained from the U.S.
EPA’s 1999 Assessment System for Population Exposure Nationwidd=JP4-26]. The
methods used for ASPEN have been described fully elsewhere [25,286ly,BASPEN is
part of the National Air Toxic Assessment [12] and is based otJiBe EPA’s Industrial
Source Complex Long Term Model. It takes into account emissidas rd&e, location, and
height of pollutant release; meteorological conditions; and théveatecay, deposition, and
transformation of pollutants. Ambient air levels of HAPs are reporas annual
concentrations inug/m® [26]. Residential HAP levels were estimated based on maternal
address at delivery as reported on vital records for cases anolsodtddresses were
geocoded and mapped to their respective census tracts byexhe Department of State
Health Services. Our data included mothers from 2,381 census tracts.

Covariates

The following covariates were seleci@riori [14,27-31] as potential confounders and were
obtained or calculated from vital records data: infant sexar yef birth; maternal
race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, leerfjt maternal birth
place (U.S., Mexico, or other); maternal age (<20, 20-24, 25-29, 30-34, 35-3490 or
years); maternal education (<high school, high school, or > high schoatjtal status
(married or not married); parity (0, 1, 2,%8); maternal smoking (no or yes); and season of
conception (spring, summer, fall, or winter). Additionally, as theosuyre assessment was
based on census tract-level estimates, we opted to include a tewsdsvel estimate of
socioeconomic status (percent of households below the poverty levetfy whs obtained
from the U.S. Census 2000 Summary File 3. The percent of household$ inegsus tract
below the poverty level was categorized into quartiles (low, umedow, medium-high, and
high poverty level), based on the distribution among the controls.



Statistical analysis

Descriptive statistics included distributional characteristicshe 33 HAPs and frequency
distributions for demographic variables stratified on case—controisstBifferences in the
distribution of categorical variables between cases and controtsdeéermined using chi-
squared tests wheRe< 0.05. Correlations between HAPs were determined using Spearman’s
rank correlation. Because SVSS is most appropriate when variablesraelated (i.ep =
0.25-0.80) but not highly correlated (i.e.> 0.80), we grouped (or “binned”) HAPs with
high correlation (i.e.p > 0.80) and selected pollutants to represent a given bin based on
existing science and correlations with the other HAPs withinbihe Omitting variables
based on correlation and existing scientific evidence is aomebk approach to reduce
multicollinearity [32]. To bin the HAPs, we used an algorithm basedaorelation that is
commonly used in genetic association studies [33]. Once the binglefered, we selected
HAPs within the bins to either best represent the bin (maximamelation with other
HAPS), or a combination of highest correlation and existing evideh@ssociation with

birth defects.

Two primary association analyses were conducted. First, wmiesd the association
between maternal exposure to each HAP individually and spina hifioispring, adjusting
for year of birth, maternal education, maternal race/ethnicigiternal smoking, and census
tract poverty status [14] using Bayesian hierarchical lagiségression. Second, we
performed a multi-pollutant analysis using Bayesian hierarchiggistic regression
combined with Stochastic Search Variable Selection (SSVS) rntyjenvestigate all HAPs
while adjusting for the same covariates. The Bayesian hiecatahniodel can be interpreted
as a mixed-effects logistic model as it provides a fixdgleeffor the association between
maternal exposure to each HAP and spina bifida in offspring, dssvalrandom intercept to
account for the within-group correlation resulting from the use okmsus tract-level
exposure assignment [34]. SSVS adds a coherent data driven prolabaistework to
search through the fixed effects and identify potentially imporasbciations [16-18,35].
Additionally, the simultaneous inference of multiple HAPs in ad3&gn framework is not
affected by multiple comparisons in the same way as inqudrdist framework, and can
easily be accommodated using an appropriate prior [36,37]. For a ceamp&ni SSVS, we
also performed a standard hierarchical Bayesian model withaatisel, assessing the HAPs
simultaneously.

We categorized the HAPs into three categories based on tis#iibulion among the
controls: high exposure (above the"9%ercentile of controls), medium exposure (between
the 8" percentile to 98 percentile of controls), and low exposure (below tfieércentile,
used as the reference) [14,38]. As a sensitivity analysis to tegoreation, the Bayesian
analysis was repeated modeling each HAP as a continuous meBs@rdo the large
variation in concentrations across all HAPs, we centered and standardizgubiatant.

Prior Distributions: For the individual pollutant analysis, we used a hierarchical fmidhe

random intercept based on previously established methods [34]. Splcifical random

intercept was given a normal prior distribution with mean of 0, andtidmedard deviation
component for the random intercept was given a uniform hyper pridreorahge of 0 to 3.
The priors for the covariate fixed effects were normallyrithsted with a mean of 0 and
variance of 10. In the context of logistic regression, these pri@scansidered non-
informative. In the multi-pollutant model with SSVS, we used timeespriors for the random
and fixed parameters for the covariates. For the parameteesponding to the HAPs, we



assumed a mixture prior for SSVS [18]. This mixture involves a nodms&ibution with
mean 0 and variance 0.001 if the variable was not selected, and @ paion with mean 0
and variance 10 if the variable was selected. Through selection of &sQ0#& variance for
the prior when the variable was not selected, the null OR isatkfis being in the interval
from 0.97 to 1.03 with a 99% probability. In other words, we consider an @fsimterval
to not be meaningfully different from a null association [19]. $&kthe prior probability of
inclusion for each variable to 0.25, and sensitivity analyses were aeddusing a prior
probability of inclusion of 0.50. These settings for prior probabilitiesrfdusion have been
shown to have a good balance between power and false positives §t8].cBvariate
(including those that were categorized) had an independent mixture prior.

Model Estimation and Selection: We estimated the posterior distributions of the hierarchical
Bayesian models using Markov chain Monte Carlo (MCMC) methods. ti@rsingle
pollutant analyses, we computed an OR for each pollutant using theigrostean, and a
95% credible interval (Cl) using the 2.Bnd 97.8 quantiles of the posterior samples [39].
For the multi-pollutant model using SSVS, we computed the margiry@sBactor for each
pollutant [40]. In brief, the marginal Bayes factor is a ratiohef prior odds to the posterior
odds that summarizes the evidence for selection of each vagalda,the data. Therefore,
any Bayes factor greater than 1 implies some evidencadiusion in the model, with values
much greater than 1 representing stronger evidence [41,42]. We includedthBs with a
marginal Bayes factor greater than 1 in a joint model, compthedjoint posterior
distribution of the selected model through MCMC, and computed the OB58acClI for the
joint model using the posterior mean and quantiles of the beta ceeffias described. For
categorical covariates, if either high or medium were tedeeve considered both as selected
for final model estimation. For all MCMC computations, we sinadatwo chains with
separate initial values, each consisting of 150,000 iterations. \Wardks the first 50% of
each chain as burn in to allow the chain to converge to the posterrdrutish. We assessed
convergence through how well the posterior means for all paresrestgelated between the
two chains. We considered a correlation higher than 0.95 indicatinghiathains had
sufficiently converged. Once convergence was determined to be adegeapmoled the
retained iterations to compute our estimates of the OR and 955 ®ICMC computations
were performed using WIinBUGS 1.4 [43], and posterior inferencepedsrmed using R
(64 bitv. 3.0.2).

Results

The distributional characteristics of 32 of the 33 U.S. EPA-desdndAPs based on the
1999 ASPEN model are presented in Table 1. Coke oven emissions, whicmebeded in
the list of 33, were not estimated for Texas in the 1999 ASRieNel. There were four
groups of highly correlated HAPs (Table 2). As noted, we identdrezlor two HAPs from
each group to represent that “bin” of HAPs based on selectiomiariieed in genetic
association studies for highly correlated single nucleotide popmems [33]. Specifically,
benzene and methylene chloride were selected to represent tilg togrelated group
consisting of acetaldehyde, acrolein, and formaldehyde, benzene amglemetchloride.
1,1,2,2-Tetrachloroethane was selected to represent the highlYatmrgroup including
ethylene dibromide, propylene dichloride, and 1,1,2,2-tetrachloroeti@mg.chloride was
selected to represent the highly correlated group including aethydechloride and vinyl
chloride. Diesel particulate matter was selected to reptethe highly correlated group
consisting of diesel particulate matter and nickel compounds. Afptyiag these criteria, 25
HAPs remained in our analysis.



Table 1 Distributional characteristics of hazardous air pollutants f1ig/m°) based on the 1999 U.S. EPA ASPEN Model, Texas

Pollutant Mean Median 5" percentile 25" percentile 75" percentile 95" percentile
Acetaldehyde 1.50 1.45 0.62 0.86 1.93 2.97
Acrolein 0.11 0.09 0.01 0.04 0.14 0.32
Acrylonitrile 4.08 x 10% 1.80 x 10% 4.18 x 10% 4.00 x 10% 7.80 x 10% 2.41 x 10%
Arsenic Compounds 6.00 x T 2.00 x 10% 1.18 x 10% 1.00 x 10% 5.00 x 10% 1.40 x 10%
Benzene 1.40 1.26 0.45 0.85 1.73 2.83
Beryllium Compounds 1.00 x 18 1.00 x 10% 4.53 x 10% 2.06 x 10% 1.00 x 10% 2.00 x 10%
1,3-Butadiene 0.13 0.12 0.01 0.07 0.17 0.30
Cadmium Compounds 1.00 x 26 2.00 x 10% 8.08 x 10 4.52 x 10% 5.00 x 10% 2.20 x 10%
Carbon Tetrachloride 0.28 0.27 0.27 0.27 0.27 0.29
Chloroform 0.08 0.07 0.04 0.05 0.09 0.16
Chromium VI 3.40 x 1¢* 7.00 x 10% 2.65 x 10% 2.00 x 10% 2.10 x 10% 1.42 x 10%
1,3-Dichloropropene 0.08 0.07 0.01 0.04 0.11 0.17
Diesel Particulate Matter 1.18 0.97 0.28 0.53 1.42 2.81
Ethylene Oxide 1.19 x 16 8.25 x 10% 7.80 x 10 4.35 x 10% 1.42 x 10% 3.38 x 10%
Ethylene Dibromide 2.57 x 1% 2.98 x 10% 4.00 x 10 1.93 x 10% 3.58 x 10% 3.73 x 10%
Ethylene Dichloride 0.05 0.05 0.01 0.03 0.05 0.10
Formaldehyde 1.60 1.57 0.55 1.02 2.01 2.97
Hexachlorobenzene 3.00 xfb 4.15 x 10% 1.08 x 10 2.38 x 10% 1.08 x 10% 6.00 x 10%
Hydrazine 1.00 x 16¢° 2.74 x 10% 2.88 x 10% 2.31 x 10% 6.14 x 10% 4.00 x 10%
Lead Compounds 2.49 xTH 1.73 x 10% 7.00 x 10% 4.90 x 10% 3.07 x 10% 7.02 x 10%
Manganese Compounds 1.50 x%0 6.40 x 10% 1.00 x 10% 1.00 x 10 1.37 x 10% 4.60 x 10%
Mercury Compounds 1.63 x1H 1.52 x 10% 1.50 x 10% 1.51 x 10% 1.57 x 10% 1.99 x 10%
Methylene Chloride 0.49 0.48 0.11 0.33 0.63 0.88
Nickel Compounds 7.30 x 1Y 4.10 x 10% 2.00 x 10% 1.30 x 10 8.00 x 10% 2.39 x 10%
Polychlorinated Biphenyls 4.00 x 16 3.90 x 10% 3.80 x 10 3.80 x 10 4.00 x 10% 4.70 x 10%
Perchloroethylene 0.20 0.20 0.02 0.12 0.27 0.38
Polycyclic Organic Matter 7.73x 16 6.58 x 10% 1.55 x 10% 4.07 x 10% 9.63 x 10% 1.78 x 10%
Propylene Dichloride 2.15 x 1% 2.42 x 10% 6.64 x 10% 1.80 x 10% 2.77 x 10% 2.80 x 10%
Quinoline 1.00 x 17" 2.70 x 10% 9.65 x 10 4.92 x 10% 2.92 x 10Y 2.00 x 10%
1,1,2,2-Tetrachloroethane 0.06 0.07 0.02 0.05 0.08 0.08
Trichloroethylene 0.10 0.09 0.05 0.07 0.11 0.16
Vinyl Chloride 6.42 x 107 6.60 x 10% 1.04 x 10% 4.36 x 10% 7.93 x 10% 1.19 x 10%




Table 2Hazardous air pollutants with correlations greater thanp > 0.80, Texas, 1999

Pollutant Acet Acro Form Benz MCI EDbr PD TCE EDcl VCI DPM Ni
Acet 1.00 0.97 0.98 0.85 0.79

Acro 0.97 1.00 0.95 0.81 0.68

Form 0.98 0.95 1.00 0.89 0.82

BenZ 0.85 0.81 0.89 1.00 0.74

McClI 0.79 0.68 0.82 0.74 1.00

EDbr 1.00 0.98 1.00

PD 0.98 1.00 0.99

TCF? 1.00 0.99 1.00

EDcl 1.00 0.98

vCi® 0.98 1.00

DPM* 1.00 0.87
Ni 0.87 1.00

*Abbreviations: Acet = acetaldyhyde; Acro = acraleForm = formaldehyde; Benz = benzene; MCI = miethy chloride; EDbr = ethylene dibromide; PD = piepe
dichloride; TCE = 1,1,2,2-Tetrachloroethane; EDdthylene dichloride; VCI = vinyl chloride; DPM sedel particulate matter; Ni = nickel compounds.

! Benzene and methylene chloride selected to représe highly correlated group including acetaldigyacrolein and formaldehyde.

21,1,2,2-Tetrachloroethane selected to represertitghly correlated group including ethylene dibidenand propylene dichloride.

% Vinyl Chloride selected to represent the highlyretated group including ethylene dichloride.

* Diesel particulate matter selected to represanhibhly correlated group including nickel composind



To minimize etiologic heterogeneity within the case group, casgh an associated
chromosomal abnormality or other syndromme < 75), those with a closed defect (i.e.,
lipomyelomeningocelen = 88), and those with anencephaty=351) were excluded. Cases
with missing geocoded maternal address were excluded(). After these exclusions, 533
spina bifida cases were available for analysis. Of the 4,132 coMd@# were excluded due
to missing geocoded maternal address. The final control group cdnsis3g695 unaffected
births for analysis. The proportion of case and control mothers miadargss information
was similar (11.4% and 10.5%, respectively), and there were no sgmificfferences on
demographic factors between those with and without a maternal addrds$ivery. The
characteristics of cases and controls are presented in Tabletl3erMof spina bifida cases
were more likely to be Hispanic and to have been born in Mexicgpaad to mothers of
controls (p = 0.003 and p = 0.05, respectively). Additionally, mothers of case more
likely to live in census tracts with higher poverty levels (@.82). Cases and controls did not
significantly differ on other demographic characteristics.



Table 3Characteristics of spina bifida cases and controls, Texas, 1999-2004

Characteristic Controls Cases P-value
N = 3,695 N =533
Sex of infant
Female 1,828 (49.5) 251 (47.3) 0.34
Male 1,867 (50.5) 280 (52.7)
Maternal race/ethnicity
Non-Hispanic white 1,344 (36.5) 196.(8 <0.01
Non-Hispanic black 430 (11.7) 54 (20.2
Hispanic 1,773 (48.1) 280 (52.8)
Other 138 (3.7) 5(0.9)
Maternal birthplace
United States 2,592 (70.4) 355 (67.4) 0.05
Mexico 785 (21.3) 145 (27.5)
Other 306 (8.3) 27 (5.1)
Maternal age (years)
<20 501 (13.6) 76 (14.3) 0.32
20-24 1,099 (29.7) 158 (29.6)
25-29 966 (26.1) 141 (26.5)
30-34 754 (20.4) 119 (22.3)
35-39 323 (8.7) 31 (5.8)
>40 52 (1.4) 8 (1.5)
Maternal education
<High school 1,155 (31.7) 188 (36.4) .08
High school 1,195 (32.8) 169 (32.7)
>High school 1,292 (35.5) 160 (30.9)
Parity
0 1,314 (36.9) 190 (37.7) 0.79
1 1,170 (32.9) 157 (31.2)
2 679 (19.1) 95 (18.8)
>3 396 (11.1) 62 (12.3)
Maternal smoking
No 3,447 (93.9) 505 (95.5) 0.15
Yes 225 (6.1) 24 (4.5)
Census tract poverty level
Low 922 (25.0) 100 (18.8) 0.02
Medium-low 925 (25.0) 144 (27.0)
Medium-high 925 (25.0) 137 (25.7)
High 925 (25.0) 152 (28.5)
Season of conception
Spring 807 (24.0) 106 (22.5) 0.45
Summer 798 (23.7) 127 (27.0)
Fall 876 (26.0) 122 (25.9)
Winter 887 (26.3) 116 (24.6)

When evaluating the association between the 32 HAPs and spina biSdayle-pollutant
models, 14 of the 32 (44%) had 95% Cls excluding 1.0 for either the mediunghor
exposure categories (Additional file 1: Table S1). Based onnthii-pollutant analysis
among the 25 HAPs, when computing the marginal Bayes factorstfi@@SVS posterior,
we identified two with a Bayes factor greater than or 1 (Tdplejuinoline (ORign = 2.06,

95% CI: 1.11-3.87, Bayes factor = 1.01); and trichloroethylene (@R = 2.00, 95% CI:



1.14-3.61, Bayes factor = 3.79). These associations are stronger traofttios covariates
(Additional file 1: Table S2), while the 95% Cls are of similadth. The unadjusted ORs
overestimate these effects due to uncontrolled confounding (Additiomdl: ffable S3). For
comparison, the joint model without SSVS only identified the medium lefel
Trichloroethylene as associated with spina bifida (OR = 5.72, 95% CI: 1.44-24.16, Additiona
file 1. Table S4). The sensitivity analysis using a prior prokgbif 0.50 yielded similar
results (data not shown). Our analysis using HAPs on the continudessstected eight
HAPs with a Bayes factor greater than 1, however, all of the ®&#ncluded 1.0 (data not
shown).

Table 4Hazardous air pollutants associated with spina bifida identified usig Stochastic
Search Variable Selection (SSVS) with a Bayes factor greater than 1.00

Pollutant Pollutant range Cases/ 0Odds  95% Credible Bayes
(ng/md) Controls  Ratio® Interval Factor

Quinoline

Low <6.50 x 10" 18/176 1.00 Ref.

Medium 6.50 x 18 - 1.71 x 10° 434/3149  1.42 (0.87, 2.42) 0.32

High >1.71 x IO 39/178 2.06 (1.11, 3.87) 1.01
Trichloroethylene

Low <0.0524 13/176 1.00 Ref.

Medium 0.052-0.16 460/3151 2.00 41361) 3.79

High >0.16 18/176 1.32 (0.61, 2.80) 600.

* Adjusted for year of birth, maternal education,tenaal race/ethnicity, maternal smoking, and cersarst
poverty status.

Discussion

To our knowledge, this is the first application of a Bayesian blgriaelection strategy to
evaluate the role of multiple HAPs simultaneously on the rigkirtth defects. Overall there
is evidence that HAPs may be a significant contributor to thle oifs spina bifida.
Specifically, in single-pollutant models, a large proportion of HAM%) were positively
associated with spina bifida. Additionally, using a Bayesian tuki@al approach with SSVS
as a multi-pollutant model, we found two HAPs that were assatciatth spina bifida:
quinoline and trichloroethylene. Mothers who lived in census tradfs mgh quinolone
levels or medium trichloroethylene levels were approximatetyttmes as likely to have a
child with spina bifida compared to mothers who lived in census tvattsrelatively low
levels. The effect estimate for mothers living in census draeith high levels of
trichloroethylene was smaller (OR = 1.32) in comparison to tleeteéstimate for medium
levels (OR = 2.00). This inverted U-shaped dose-response relatioastopnmon among
toxicants that act as endocrine disruptors such as trichloroethylene [44-47].

The mechanism by which HAPs may lead to teratogenesis is unkridgwever, certain
HAPs (e.g., benzene, polycyclic aromatic hydrocarbons) are knowngs the placenta and
have been found in cord blood at levels equal to or higher than mdikodl[48]. Potential
mechanisms by which HAPs may influence the risk of spina bifidade genetic toxicity
and oxidative stress. In fact, these mechanisms may interacintribute to teratogenesis.
Specifically, certain HAPs (e.g., polycyclic aromatic hy@mbons) can lead to genetic
toxicity by covalently binding to DNA. The resulting DNA addycifs not repaired, are
mutagenic, resulting in the disruption of the cell’s microenvirammevhich leads to
inhibition of important enzymes, cell death, and alteration of otHer [@®]. If this occurs



during the critical window of embryonic development, the complex cellptacesses
involved in development may be disturbed, leading to spina bifida. SevaRs Ke.g.,
benzene, toluene) can also form free radicals known as reactivenosygeies (ROS) [9],
which may lead to oxidative stress. These ROS can cause DidAdsbreakage or
fragmentation leading to cell mutation [49]. The importance of tixelastress as a
mechanism of teratogenesis is suggested by several animal studies [50-55].

Quinoline is a coal tar constituent and is the major tar base in creosote [56ud8 models,
maternal exposure to quinoline has been shown to induce skeletal ardlvisalformations
in offspring [57]. Other studies indicate quinoline may cross the placenta irtieshe of the
developing fetus [56]. However, to our knowledge, there have been no staligstiag the
association between human maternal exposure to quinoline and the sgkafbifida or
other birth defects, suggesting more work is needed on the poterdiaigeicity of this
agent.

Most of the trichloroethylene used in the U.S. is released intatthesphere from industrial
degreasing operations [58]. While there is evidence from both aamdahuman studies that
trichloroethylene is associated with birth defects, sped§icangenital heart defects [59-
61], there is ongoing debate over the teratogenicity of thiatpall [62]. An evaluation using
data from Camp Lejeune, North Carolina indicated that mothers expoéegher levels of
trichloroethylene were 2.4 times (95% CI: 0.6-9.6) as likely toehaffspring with NTDs
compared to those exposed to lower levels [63]. While this asisociaas not statistically
significant, the strength of the association was similar to that in ousassgs

While maternal exposure to benzene was associated with spinaibifita single-pollutant
model, it was not selected as a final variable in the multi-@witunodel. The effect estimate
for benzene from the single-pollutant Bayesian model for the yhiggpposed group (OR =
1.99) was similar to that from the previous assessment (OR = [A8D)The absence of
benzene from the final model may be due to multiple factoradiva: 1) high correlationp(

> 0.80) with several other HAPs and 2) the estimate of effect was not asasrotiger HAPs
in the final multi-pollutant model.

Our study must be considered in the light of certain limitations. One padténttation is the
use of modeled predictions of ambient air concentrations of HA®stfie ASPEN model),
which may have resulted in exposure misclassification. Howéhene is no data source that
sufficiently addresses this issue. For instance, personal mogitsrinot available on a
population scale, and outdoor monitoring in Texas is restricted taircezommunities.
Therefore, the use of ASPEN data is a cost-effective applinaabsessing this important
guestion. An additional potential limitation is the use of ASPEN data 999 for the entire
study period. It is not recommended by the EPA to include ASPENTdatamultiple years
simultaneously in one assessment. However, relying on HAP estifnam 1999 alone may
be a suitable surrogate for other years as while leveétfB%s are likely to change over time,
the relative ranking of census tracts based on ambient levidlaRd was unlikely to change
during the study period [10,64,65]. Additionally, ASPEN data have beeninsseveral
population-based assessments of adverse health outcomes, including bot$ [d<f,65-68].
Lastly, information on address at conception was unavailable, anefciieerwe were limited
to basing the exposure assignment on maternal address at ddfiwermgver, our previous
work suggests that census tract-level exposure assessmensignificantly different when
assessing HAP exposure using ASPEN data between the time @ptoncand delivery
[69].



Another potential limitation is the use of an area-based (ceratiddvel) measure of HAP
exposure. Using area-based measures of exposure always assumelevel of increased
exposure misclassification, especially compared to individual-levehsures. However,
using census-tract level exposure information, as was used ias$essment, lessens the
amount of potential exposure misclassification compared to using clewetyinformation,
which is commonly used in epidemiologic studies of environmental exEofg 0-72]. In
addition, it is possible that the amount of exposure misclas@icabuld vary by each HAP
included in this assessment, potentially introducing additional exposeasurement error
with a complex correlation structure, all of which could bias thecegstimates towards the
null.

Another point to discuss is the correlation among HAPs in our datahd&e a correlation
binning technigue commonly employed in statistical genetics to retheceorrelation of
HAPS to be below 0.80 while representing as much of the associattomation as possible
in the HAPs for the model [33]. Other methods could have been usdd,asubinning
pollutants on chemical properties, or perhaps targeted source. Howiener the statistical
model assesses association through correlations, defining bins of 34884 on correlation
seems to be most congruent with the statistical modeling apprdéetadded a scientific
component in our dimension reduction. Instead of purely using stattstickefine the
representative of each bin, we chose the representative HA®R®ifobased on 1) previously
reported associations as well as 2) the level of correlatieadi HAP with the other HAPs
in the bin. This approach allowed for the combination of previous sceeatiftlence as well
as statistics to represent each bin.

Previous evidence suggests that SSVS may be prone to favonéglaeve results [18,19].
Using a Bayes factor threshold of greater than 1 usually redheesiumber of false
negatives; however, even in the case of increased false negativegrage, SSVS methods
are more likely to generate correct associations compared to standaidrsetethods [18].

Strengths of this study include the use of a population-based birthtsdeéegstry that
employs an active surveillance system to ascertain dasmgghout the state of Texas. This
should limit the potential for selection bias. Furthermore, the TBi#ls Defects Registry
includes information on pregnancy terminations reducing potential b@sodthe exclusion
of these cases. An additional strength was the use of taveéBlasmall (census tract-level)
measure of exposure. Using larger geographic units to estin@isweg (e.g., counties) may
not capture the spatial variability of HAPs [73].

An important aspect of this study was the Bayesian hieraichigproach for evaluating
multiple pollutants while also accounting for the within-group catieh resulting from the
use of a census tract-level exposure assignment through the rantiencept [34].
Traditional models based on variable selection in a stepwise appoaa lead to biased
estimates [15]. Bayesian variable selection techniques (e.g.S)SUffer an attractive
alternative to multi-pollutant modeling. Specifically, SSVS uggs model selection
uncertainty in the model building process to provide more comprehemgm@nation
regarding important predictors [16-18]. In our assessment, the Bayesianthhieal approach
resulted in the selection of two HAPs in the final multivariatiledel; however, when
modeling the association with spina bifida in the single-pollutant leode detected 14
HAPs with statistically significant associations with sgiifeda, some of which may be false
positives. When compared with the traditional single pollutant modwss multivariable
model reduces the number of detected pollutants from 14 to two.



In conclusion, we believe the use of Bayesian hierarchical mod#isS&VS provides a
robust alternative in the evaluation of multiple environmental pollutamtdisease risk as
this approach allows the joint assessment of multiple factbike wicluding estimates of
uncertainty to balance power and false discovery control [18]. Bayesethods have been
reported to outperform conventional maximum-likelihood-estimation technicgoes
prediction and are useful in settings where multiple exposureseakiated [36,37].
Additionally, concerns about multiple comparisons can be eliminatedeirsimultaneous
assessment of multiple HAPs within a Bayesian framework [36,p€ékiftcally, SSVS type
methods may be prone to favoring false negatives [18,19] (SIM and Dgvodaning that
false positives due to multiple comparisions are not an issue.appi®ach has been used
successfully when assessing the role of multiple genetic marian complex diseases
[18,21,22,74], and can be easily extended to environmental exposures, where novel
approaches are needed in the context of multi-pollutant modeling.
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